Dispatches Tagline
Monday, February 22nd, 2021

Two Hikes in One

Monday, February 1st, 2021: Chiricahuas, Greenhouse, Hikes, Snowshed, Southeast Arizona.

Cold Toes

During the past week, since my aborted hike into a blizzard, we’d had up to a foot of snow in town, at 6,000′, and much more in the mountains. Warming temperatures had melted off about 4 inches, and I’d done a midweek hike up a north slope, a slog in foot-deep snow, to about 7,200′. On the weekend, I needed a long hike with a lot of elevation gain to maintain my fitness, so without too much optimism I headed back to the Chiricahuas, simply because the base elevation is lower there and I might get farther before encountering deep snow.

I picked a trail that I normally avoid because it’s relatively boring. It starts at about 5,300′ and traverses an exposed southeast slope for much of its length, so I was hoping that would be mostly snow-free. I knew it crossed to the northwest side for the middle two miles, and that slope was steep and shaded by mature forest, so I expected the deepest snow there. I would just give it a try and see what I found.

On the way up, I occupied myself with tracking. It’s not a popular trail, but it’s an easily accessible trail in a popular mountain range, so I wasn’t surprised to find tracks preceding me: a large pair of serious hiking boots, a medium pair of cheap Merrells, and a smaller pair of city boots. A quarter mile in, the trail passes a private home, and there, a big dog joined me for a few hundred yards, then turned back. People from the private home had picked up and followed the trail on horseback, earlier this morning.

About a mile in, crossing a meadow, the trail hits a junction. The horse tracks continued straight on the level Basin Trail, while my branch turned left toward the foot of a ridge.

Leaving the meadow, the trail starts switchbacking up the ridge to eventually reach the long southeast-facing traverse. Here, it alternated between bare stretches and patches with a couple inches of snow, where I could more easily read the tracks. The cheap boots and the city boots had disappeared, but now there were big animal tracks accompanying the big boots. At first I assumed they were dog tracks, but they’d clearly been missing at the trailhead. Had the dog from the private home joined this hiker?

Then I found tracks that were distinctly different and really looked like a mountain lion. These tracks were heading down the trail in the opposite direction. In a few places, I even found the two different tracks close together. One set was narrow and had clear claw marks, whereas the other set was wide and lacked claw marks. Still, all the tracks were somewhat confusing.

Eventually, the animal tracks disappeared from the trail, and the boot tracks continued alone, deepening the mystery. About 3 miles in, I reached the high saddle where the trail crosses to the northwest side of the ridge. Here, the big boot tracks turned back, and I had fresh snow ahead of me, about 6 inches deep. But as the trail moved in and out of patches of shady forest and became steeper, I had to break trail through deeper and deeper drifts.

Finally, almost a mile further, as I was hopefully approaching the next saddle, my boots plunged 14″ into a drift, and I suddenly realized that my Smartwool socks were wicking snowmelt inside my boots, all the way down to my toes, which were starting to get really cold. I always carry an extra pair of wool socks, but I knew they would soon get wet, too. I’d really need gaiters if I was serious about hiking deep snow.

It seemed that this would be the end of today’s hike. Bummer, but at least I’d gotten a little farther than I had last week, in the blizzard.

Germ Warfare

On the way down, after I crossed the saddle and finally reached a stretch of bare trail, I stopped to change socks. This made me feel much better, and I suddenly thought, why not do another hike? Since this hike had been aborted, I had at least a couple more hours before I had to drive home.

There weren’t too many options nearby – really only the peak hike that started near the visitor center, just down the road. It climbed and traversed a north slope, but at fairly low elevation, before turning into a shaded canyon that would surely have deep snow. I figured I could get at least four more miles and nearly 1,500′ elevation gain, in addition to the 8 miles and 2,100′ I’d already hiked today.

So I returned to the Sidekick and drove down the road. There were already three vehicles parked at the other trailhead, and a half mile up the trail I saw people up ahead – a tall, obese young couple dressed identically in form-fitting sweat suits. They preceded me for a few hundred yards, then stopped, turned around, and spotted me below them.

There were juniper trees between us, and when I emerged from behind one and found them stopped just above me, I saw they’d both “masked up.” I found this strange – it was the first time I’d ever encountered anyone wearing a mask on a hiking trail. Our local trails are seldom used, it’s rare to ever meet someone, and when we do, we just maintain social distancing, figuring that any virus that might get out is quickly dispersed in the open air and can’t be concentrated enough to be contagious. But these were likely city folks, used to much more crowded trails.

We greeted each other and I passed them at a safe distance. As I did, I walked into a dense cloud of artificial fragrance. My god, it was rank. How could two people cope with so much fragrance? I was at least ten feet from the woman – were they both wearing it?

I puzzled over this most of the way up the trail, and then suddenly realized that they’d probably been carrying some kind of disinfectant spray, like Lysol, that they’d sprayed all around when they saw me approaching. This was another first! I mean, better safe than sorry – but it seemed pretty extreme. I guess we country folks are way out of touch with trends in the city these days.

I found tracks preceding me on this trail, too, but they also stopped after a mile and a half, and I was again breaking trail in snow. I made it around the corner of the ridge into the canyon below the peak, where I ran out of time and turned back just as the snow was getting deep enough to wet my socks.

I was really proud of myself for solving my problem, hitting two trails in the same day, and going farther than anyone else on both trails. Maybe this will be the solution as long as our local peak trails are blocked by snow.

No Comments

Fire, Part 4: Recovering in Burn Scars

Saturday, February 6th, 2021: Fire, Nature, Wildfire.

Previous: Questioning Wildfire

All images by Max unless otherwise credited.

Recovering Together

Before I began to lose mobility in 2014, hiking was just the cardio part of my weekly fitness regimen. I was still commuting to the West Coast for work, and with no time to explore our vast local wilderness areas, I hiked the same four or five trails close to town, week in and week out, year in and year out, just to stay in shape for hiking my beloved desert on sporadic vacations.

Back then, I was just maintaining capacity. But now, in recovery, I was trying to rebuild it, so I needed ways to measure progress. I needed to more accurately determine and record the distances and elevations I was hiking from week to week. It turned out that I really hadn’t lost much conditioning after all, and I quickly outgrew those short trails near town. Years of frustration made me want to achieve more.

The more challenging trails – longer and with more elevation gain – tended to be much farther away, in high mountains and wilderness areas – areas I might’ve explored from the start if I hadn’t been put off by that green blanket of forest. But now, wildfire had opened it up. While most people grieved the loss of trees, I was excited because now it would be more like the desert – I could see where I was, and I’d have long views over the landscape. And sure enough, all the challenging trails within a day’s drive of home turned out to traverse recent burn scars. My disabled body would be struggling to regain capacity in natural habitats that were struggling to recover from wildfire. Nature would be my teacher, my inspiration – what could be more appropriate?

During the past three years, I’ve hiked roughly 2,500 miles in burn scars, many of those miles bushwhacking or wayfinding on trails that have been abandoned, blocked, and overgrown. I’ve climbed over 600,000 vertical feet, my eyes peeled for differences in wildfire response between low-elevation grass-and-shrublands, mid-elevation pinyon-juniper-oak forest, and high-elevation mixed-conifer forest, as well as for large-scale patterns in landforms and landscapes visible from miles away. Wildfire has literally made me stronger and increased my endurance. But it’s also challenged my perceptions, helping me become a better observer, tracker, and pathfinder.

I’ve hiked burn areas in the Henry Mountains of Utah, administered by the Bureau of Land Management. In the White Mountains of Arizona, administered by the U.S. Forest Service as part of the Apache-Sitgreaves National Forest. In the Pinaleno and Chiricahua mountain ranges of Arizona’s Coronado National Forest. And in the Mogollon, Pinos Altos, Burro, and Black Range mountains of New Mexico’s Gila National Forest.

These hikes have taken me, on multiple visits to each, through the burn scars of the Bulldog Fire (2003), the Horseshoe II Fire (2011), the Wallow Fire (2011), the Whitewater Baldy Complex Fire (2012), the Gomez Peak Fire (2012), the Silver Fire (2013), the Signal Fire (2014), the Frye Fire (2017), and the Tadpole Fire (2020), and the scars of older burns not on record. The majority of these hikes have occurred within federally-designated wilderness areas.

That said, I’m still just an amateur, and my study has only really begun, so what I have to share is in no way scientifically rigorous or complete. It’s just my experience as a beginning student of wildfire.

Landscape and Resilience

My first immersion in a mixed-conifer burn scar occurred unintentionally, during the summer solstice of 2018 in Arizona’s White Mountains. As mentioned in Part 2, this is a special, distinct landscape: a high plateau of vast grassy meadows separated by low meandering ridges and isolated peaks of dark volcanic rock. Much of the mixed-conifer forest blanketing those peaks and ridges had been burned in 2011’s Wallow Fire, and this was my first hike into its heart.

Making my way upstream along a narrow creek, in the shadow of a mature, parklike forest of old-growth pine and fir, I suddenly emerged into stark sunlight. A few living pines and many charred snags remained standing on the low slopes at my left and right, but most of the forest and any previous undergrowth had been killed off the slopes. Now, 7 years after the fire, only low bunchgrasses had been able to re-colonize those slopes, which were strewn with blackened logs.

The stream and its banks, on the other hand, cut a lush, bright green corridor through the ruins. I stopped and tried to visualize this little valley during the fire, with roiling, raging flames pouring down from above. Did the water boil? Did the stream provide a refuge – not only for underwater plants and animals, but as a wet, cooler corridor for riparian life to survive the fire?

Then I was yanked back to real time, noticing movement a hundred feet ahead. Three cow elk had crossed the creek and were moving from my left to right, east to west, wasting no time. I’d seen elk in these mountains several times over the years, sometimes in small groups grazing in roadside forest, sometimes in large herds spread across open meadows. I guessed these animals were moving from one distant location to another – to join a herd, or to reach an “island” of forage that had been left, or created, by the fire.

Suddenly, out of the ruins, I recognized a landscape consisting of habitats for both plants and animals, created by wildfire over time, as part of the fire cycle. The stream had provided a refuge. Landforms like mountains, ridges, meadows, and valleys had shaped the fire, and the fire had preserved or opened islands and corridors of habitat, redirecting the movements of wildlife. It wasn’t just a catastrophic event, a momentary disturbance that began with abundant life and ended with traumatic death. It was a passage in an ongoing story.

But when I applied these lessons to a completely different environment – the Sky Island of Arizona’s Pinaleno Mountains – they told a different story. In contrast with the little stream in the Whites, Sky Islands provide refuges on a macro scale – what ecologists call refugia, isolated remnants of habitat that were once widespread. Hiking in the higher elevations of the Pinalenos, I saw how the Frye Fire in 2017 had wiped out entire slopes of habitat for the critically endangered red squirrel, shrinking its already tiny refugium. These squirrels were uniquely adapted to and totally dependent on this small patch of high-elevation forest, which was truly an island separated by dozens of miles of arid, unforested hills and basins from its nearest neighbors in distant mountain ranges.

Unlike the elk, the squirrels were stuck here. They couldn’t escape and run long distances across open ground to another mountain range. The more of their forest was destroyed by fire, the fewer squirrels would survive. Rather than resilient survivors adapting to new conditions, they appeared as helpless victims, relics stuck in the past. There are no guarantees that all of us – or any of us – will survive what’s coming. The smaller and more limited your habitat, the more likely it is you’ll eventually go extinct.

But what about the squirrels’ habitat – the mixed-conifer forest on top of that specific mountain range? Just as the squirrels were “adapted” to and dependent on their forest, the forest depended on the squirrels. Regularly, year in and year out, the squirrels bury conifer seeds, which then become a seed bank ready to regenerate the habitat after a major disturbance, like wildfire. The loss of a single species, and the ecological work it performs, reduces the resilience of the ecosystem, and might ultimately result in the loss – the conversion – of its habitat, which might not be able to bounce back after a catastrophic disturbance.

Wildfire Behavior: A Dance With the Land

Already familiar with the distinctive landscape of Arizona’s White Mountains plateau, I could imagine how the Wallow Fire had to follow the meandering forested ridgelines, or be carried by wind as sparks to cause “spot fires,” rather than just racing across those intervening grassy meadows. We all know that heat rises, and when I saw entire slopes turned to ash in the Pinalenos, I assumed fire had begun at the lower end and burned uphill. But it wasn’t until I started hiking the Gila Wilderness in early 2019 that I got a clearer sense of how landscape shapes wildfire.

In contrast to the high plateau of the Whites, or the Sky Island of the Pinalenos, the Mogollon Mountains are just the high western edge of a vast, tilted platform of ancient volcanic sediment that has been eroded over time into a maze of sharp ridges and deep, shaded canyons. The steep slopes between ridgetops and canyon bottoms are irregularly punctuated by talus, rock pinnacles, and cliffs, and these topographic and surface features break up the forest, redirect winds and airflow, and shaped the path and impacts of our “devastating” 2012 Whitewater Baldy Complex Fire.

Already, in 2014, I’d hiked to the sharp top of a ridge where I had one foot in the exposed ash of a moonscape and the other in the shadow of intact forest. I didn’t know if that sharp boundary was caused by the natural sharpness of the ridge or by the way the fire was stopped by the Forest Service. But in the Mogollons I could see how entire drainages between outlying ridges had been protected, either because the fire had burned uphill rather than sideways around a sharp corner, or because prevailing winds and hot air currents had been channeled by the landforms, driving the fire in corresponding paths.

At the time of the fire, these isolated drainages must have provided refuge for animals as well as plants, and the many exposed rock outcrops would’ve also provided refuge as the fire was forced to bypass them in its spread.

At the beginning of June 2020, while I was stuck at home recovering from an episode of severe back pain, dry lightning sparked wildfire in a remote drainage below a ridge near town that I’d been hiking regularly for many years. The trail followed the six-mile-long ridgeline, so I knew the forest up there well, and I knew that its steep north slope was choked with excess fuel – dense underbrush and deadfall.

The road through that area was closed, and my condition, and the surrounding hills, made it hard to see what was going on, but I followed updates on Inciweb, the government wildfire information website. I assumed the fire would burn uphill to the ridgeline, and I was saddened to think that I’d lose yet another forest hike. But as the online fire maps were updated from day to day, I saw fire behavior that was completely unexpected. The fire climbed straight north up to the ridge, then dropped straight north down the back side without running laterally. Then from there, it turned right and ran laterally to the east, while windblown sparks raced above it and landed at the east end of the ridge, where spot fires merged and became a new center.

After that, fire behavior seemed random, running and spotting in all directions until the fire boundary encompassed the whole ridge and all its outlying spurs and foothills. But whenever I zoomed my camera or used binoculars from a distant peak, I could see a lot of intact forest still standing, everywhere.

Two months later, the fire had finally burned out and the road had been reopened, and I hiked the entire ridgeline, discovering that the fire had made narrow runs both up and down the north and south slopes, completely consuming narrow swaths of vegetation while leaving the surrounding, seemingly identical slopes intact. It had burned laterally along some slopes, leaving the upper forest intact, with a sharp line between moonscape and lush forest. In some spots, it had burned individual trees down to the roots while leaving no trace of charring on surrounding vegetation.

Although I wasn’t sure why wildfires behaved so erratically, I now had a better understanding of what the authorities meant when they reported “patchy” fire damage. Media coverage, and occasional views of fires from a distant highway, had led me to believe vast areas of forest had been completely destroyed, but what I was now finding, in the heart of the burn area, was a complex mosaic of both new and old habitat – much more complex than the pre-existing forest. Rather than the simplicity of life vs. death, the fire had created a new diversity of habitats.

And it was not just the familiar cliche of “biodiversity” – many different species packed into a single habitat or region – this was a whole new paradigm. Many more distinct habitats, each with its own ecosystem, its own community of organisms, packed into the same area. And all the patches of the mosaic were small enough, and close enough together – typically connected to others of the same type in a network – that most animals, and the seeds of plants, could move back and forth between them, from shaded gully to gentle slope to steep ridge and mountain top, from exposed rock to grassland to shrubland to forest, sharing the best of all worlds.

The Wildfire Cycle: Aftermath and Repercussions

In 2019, as I recovered from my disabilities, gained capacity, and sought more challenging hikes, I tried to plan hikes that were farther away. There was little information online about trail conditions in the Pinalenos – it appeared that since the big wildfires there, neither the Forest Service nor crowd-sourced websites were updating trail conditions. There were no recent trip logs, and I got the sense that hikers were mostly avoiding that area – either because they knew the trails were bad, or they were just guessing.

I was interested in the biggest canyon on the south side of the range, because it was remote and had a perennial stream. The trail ran up the canyon for a few miles then switchbacked to the crest. It was long enough for a serious day hike, and offered a challenging climb. But what I found in that canyon blew my mind. It was something I’d only read about in John McPhee’s book The Control of Nature – a massive debris flow, resulting from the erosion that followed the 2017 Frye Fire.

This wasn’t ostensibly as dramatic as McPhee’s example – boulders the size of freight cars rolling out of canyons into upscale suburbs – but it was deep in the wilderness, and I wasn’t just reading about it, it was blocking my path. I’d lost the trail miles below, because post-fire floods had carved and completely re-shaped the stream bed. Then suddenly I emerged into a nightmare landscape where, quite recently, a huge pile of white boulders had rolled down from above, submerging the canyon bottom and its green riparian habitat. The skeletons of big pine and fir trees rose like zombies from the boulder pile, killed from the roots up, still bearing a dead weight of brown needles.

Forest was intact on both sides of this canyon – you couldn’t even see the wildfire burn scar from here. There was only one place these boulders could’ve come from – the burned slopes thousands of feet above. I laboriously climbed over the debris flow, which stretched a half mile upstream, and found that it ended in a cliff with a tall waterfall pouring out of a narrow gap high above, where these thousands of tons of boulders had to have rolled through, plunging nearly a hundred feet and crashing into the canyon bottom where they quickly spread out and piled up to create a completely new swath of habitat, a maze of fresh new niches to be filled with sediment, soil, plants and animals.

A year later, hiking through moonscape burn scars high in the Black Range and Mogollon Mountains near home, I saw how these erosional events start. I crossed deep vertical gullies created on upper slopes by headward erosion. After a catastrophic wildfire, when a stand of trees on a steep slope is killed, the soil and underlying rocks are no longer held in place by tree roots. Rain and melting snow literally drag loose sediment out from under the slope, and the resulting gully eats its way up the slope, broadening into a new canyon over time. Chunks of the mountain top are literally broken up and moved downhill.

Wildfire is not only shaped by existing landforms – it creates new landforms, through erosion and deposition. That’s an integral part of the fire cycle, as anyone knows who lives in a wildfire zone. One of the first things the authorities warn you about is flooding and erosion, which follow quickly in the aftermath of wildfire.

From my earliest forays into burn scars, I’d been blocked or hemmed in by thickets of oak and aspen and scratched by thorns. I was used to the tiny, non-threatening thorns of wild roses and raspberries, but it wasn’t until I began hiking the burn scars of the Silver Fire, high in the Black Range east of my home, that I became aware of, and focused in on, New Mexico locust.

Back east, I’d grown up with the thorny honey locust tree. A thicket of locust seedlings had provided my secret childhood hideout, sheltering me from neighborhood bullies. These New Mexico locusts in the Black Range burn scar had vicious thorns up to an inch long. Once I knew what they were, I found they were widespread in high-elevation burn scars. But whereas here in the Black Range, they formed dense thickets, in other locations they were sparse and far outnumbered by oak or aspen.

Plants use thorns to protect their foliage from herbivores like deer. Conversely, this would seem to imply that locust leaves are desirable forage for herbivores, and wildfire that removes the canopy of mixed-conifer forest provides a bounty of new forage for wildlife. I also learned that the flowers are edible, although after trying a few in the summertime, I wasn’t crazy about their raw flavor. But apparently their protective thorns enable them to become one of the three main invaders of burn scars.

Still seeking more variety and more challenges in my hikes, in early 2020 I ventured over into the Chiricahua sky island of extreme southeast Arizona. I was attracted to these mountains because they had more exposed rock to break up the monotony of the forest, but I knew the forest they did have was devastated in the 2011 Horseshoe II Fire.

There was also more up-to-date information on trails, in a website maintained by a single devotee. Based on his report, I headed up a trail that offered short access to the crest of the range. He said it had been cleared of deadfall the previous year, but after I summited a switchback slope and reached the halfway point, I entered a canyon where the trail was completely blocked by hundreds of living trees that had fallen down from above, seemingly all at the same time.

This was new to me, and when I contacted the website guy, I learned it was known as a blowdown.

When a tree topples and is uprooted, in one piece, it leaves a hole, and the underside of the root mass is exposed. I’d encountered that throughout my life of hiking in forests, but I’d never really considered all the ramifications. Sure, we all know that trees can blow down sometimes in a high wind. But why did this section of trees, on this particular slope, blow down all at once, when the forest around them was spared?

Maybe there was a problem with the soil – maybe as a result of the wildfire, or maybe developing over a longer time – and/or a problem with the health of these trees, that weakened their roots or their anchorage in the ground. A continuous stand provides wind protection for individual trees – a windbreak – and the opposing stand, across the narrow canyon, had mostly been killed off by the wildfire. Maybe that loss of windbreak had increased wind’s impact on these survivors. Maybe it was just a freak of wind, channelled by the landforms – this was a “hanging” canyon that ended abruptly at a downstream gap. Maybe even the strongest, best-rooted trees couldn’t’ve resisted that powerful gust.

Later in the year, hiking a narrow but flat-topped ridge near home, I came upon a smaller blowdown – a dozen tall, seemingly healthy ponderosa pines that had all toppled in the same direction, south to north, directly across the trail. The forest remained intact all around this new open patch.

The top of a peak or ridge funnels a prevailing wind, generally producing the highest wind speeds and forces, so here, it was easier to guess why trees had been blown down, but not why this patch had been singled out while their neighbors stood fast.

The cause would remain a mystery, but I now knew that within the fire cycle, living trees as well as dead trees could be blown down en masse, creating new openings in the forest, reducing forest cover and making way for new habitat.

Climbing Through Deadfall and Blowdown

At the beginning of my “recovery in burn scars,” I was dealing with my latest disability, a shoulder problem. It started as a sharp pain in my right bicep while stretching, but by late 2018 I had to pause my upper-body workouts, and just putting on or taking off clothes became a challenge – I couldn’t raise that arm more than 45 degrees without triggering severe pain.

Our local surgeon prescribed physical therapy, but that made it worse. Then he ordered an MRI and said I had a rotator cuff tear that could easily be fixed with surgery. But when I talked to others who’d had that surgery, I learned it had the longest and hardest recovery period of any orthopedic procedure. I live alone, but during the first 6 weeks, I’d need somebody with me 24/7, and I could expect waiting up to a year for recovery, which still might not be 100 percent.

So I decided to try to work through it – to take lessons from the failed physical therapy, and carefully, laboriously build strength in the tissue surrounding the rotator cuff, to hopefully compensate and recover more use of that shoulder.

It took months, but it worked. There were still limitations on what I could do with that arm, but I learned what they were, and was mostly able to avoid triggering the pain. And within those limits, I recovered virtually all my original strength and range of motion.

However, while working on the right shoulder, I discovered the exact same problem, just beginning in the left. And several months after recovering from the first rotator cuff tear, I was driving west across an uninhabited stretch of Utah, looking for a prehistoric pictograph site, when my whole left arm suddenly caught fire with crippling pain.

I had to drive with the right arm to the next exit, where I pulled off, took some meds, and rested. But the pain remained so severe that I had to give up on camping that night, and retreated to a distant motel, where I rested and treated the pain for a couple of days before driving home.

Fortunately, I knew what to do this time, so I started the whole upper-body recovery effort over again. And my lower body was fine, so I could still hike, as long as I used my recovered right arm for things like lifting my pack.

At the same time, I was beginning to outgrow the trails that had been cleared of deadfall in our local burn scars. I needed more distance in my Sunday all-day hikes. Those trails all continued for many miles into wilderness, but the continuations were all abandoned and blocked, either by fallen snags or char from the old wildfires, or by blowdown due to wind.

Three months into recovering from the second rotator cuff tear, I decided to try an unfamiliar trail. For half of its distance, it traversed a north slope through a forest turned into moonscape by fire. It was early February and snow on that north slope was about 8 inches deep. The trail was mostly clear of deadfall, but at one point I reached a log lying across the trail at chest height. The easiest way to get past those is to wrap both arms around the log and swing underneath, but when I tried that, it felt like I was tearing my left arm off at the shoulder. I screamed, dropped into the snow and lay there a while, breathing hard.

Fortunately the pain receded by the time I finished hiking, and it didn’t seem to have reversed my recovery. But as I began to push farther on uncleared trails, my hikes became less about walking, and more about climbing over, under, and around obstacle courses created by the trunks and branches of fallen trees. My recovering upper body was getting almost as much of a workout as the hips, knees, and feet that I’d spent years trying to restore.

This reached a climax in December 2020, when I decided to try a trail I’d been wondering about for 14 years, ever since I’d moved to southwest New Mexico. It was the crest trail that traversed the heart of the “moonscape” burn scar of the Whitewater-Baldy Complex Fire, connecting the highest peaks of the range. Trip logs from recent hikers said it’d been cleared of deadfall the previous summer. But what I found was nothing short of apocalyptic.

Used to hiking 7 or 8 miles into the wilderness before turning back, I only made 4 miles on this trail, and to get that far, I had to climb over, under, or around up to 2,000 trees that had fallen in the past couple of months. Why now, and why so many? I remembered we’d had high winds in November. And maybe the timing was just right, just enough time had passed since the fire, and the grip of all those dead but still-standing trees had weakened just enough to let them fall. Trees in a stand provide wind resistance – windbreak – for each other, and as more fall, there must be a domino effect.

My recovered shoulders got their ultimate workout. And I saw just how much a high-elevation mixed-conifer forest could be physically transformed after high-intensity wildfire.

I’d seen big herbivores like deer and elk making their way through deadfall with no problem. Jumping hurdles is as intuitive for them as walking. I’d learned how a wide variety of animals make use of human trails, which often begin as animal trails anyway. A mountain lion had preceded me on that deadfall trail, and I could see that with its lower profile, it had an easier time because it could simply slink under most of the fallen logs that spanned the trail.

I began to think all these blocked trails, in the wake of wildfire, might even be a good thing, because they’d help keep humans and their invasive species – dogs, horses, cattle, and the non-native seeds carried by all – out of recovering habitat. But that’s probably wishful thinking.

Mature forest habitat provides many services and resources – soil stabilization, shade, nesting sites, tree seeds, and leaf litter, to name a few. But after high-intensity wildfire destroys the evergreen canopy, sunlight can reach the ground, and grasses, annuals, shrubs, and deciduous trees will invade, providing a bounty of rich forage for rodents, birds, and herbivorous mammals.

Invertebrates like ants, termites, and wood borers gain masses of new habitat in rotting logs, and bears find sugars in the sapwood and a potential bounty of insects and larvae when they tear off the rotting bark. In the long run, nutrients from rotting logs, processed by fungi, insects, and bears, replenish the soil.

Each time I suffered a disability – the onset of pain, the loss of strength and mobility – I feared it would be permanent. But so far, I’d found that in my body, as in nature at large, each loss was not an end, but the beginning of a new cycle.

Next: Wildfire Revelations


Frosty Ridge

Sunday, February 14th, 2021: Bear, Hikes, Pinalenos, Southeast Arizona.

The forecast called for up to 4 inches of snow, beginning in early morning, so I was looking forward to today’s hike. But 4 inches in town, at 6,000′, could translate to a foot in the mountains. So I’d decided to try one of my favorite hikes, over in Arizona, which starts over a thousand feet lower and climbs to a little below 9,000′. I didn’t know if I’d make it to the top, but I’d try.

However, I wasn’t thinking about the long drive over there. When I got up in the morning there was an inch of snow in town. By the time I was ready to go, it was snowing again. The Sidekick has the best all-terrain tires you can get, and I shifted it into 4 wheel drive. As I drove south out of town, rising toward the Continental Divide, more and more snow was coating the highway.

I’d never tried the Sidekick on a snowy road before. My 2wd truck would’ve just slid off into a ditch immediately, so I was quite apprehensive. There was nobody else on the road.

The Sidekick did fine, and I figured the snow would end where the highway drops out of the mountains into the basin, below 5,500′. But it didn’t – it turned into a blizzard there. Snow was piling up in Lordsburg, below 4,500′. Crazy!

If Lordsburg had inches of snow, I wasn’t even sure I could get to the trailhead over in the Pinalenos. Maybe I should skip that climb, head south to the Chiricahuas instead, and do a low-elevation loop. I wouldn’t get much of a workout, but it’d be better than nothing.

But I finally emerged from the snow, crossing the playa on I-10, and saw blue sky ahead. I decided to keep going. And it turned out that the storm hadn’t dumped as much in Arizona as it was dumping in New Mexico.

The forecast had called for more snow throughout the day, so I dressed warm before heading up the trail. It’s really hard to change socks or pull on long johns when you’re already standing in snow.

It was windy, and clouds kept breaking up the sunlight, so I kept going from warm to cold while climbing. I couldn’t see much snow on the slope ahead, but I could see frost on the pines and firs up on the ridge. It can get really cold up there.

I hit snow on the trail at about the halfway point.

Fortunately the morning wind didn’t follow me onto the ridge top. The snow depth varied from 3 inches to a foot in steep, shady spots. It was beautiful fresh powder, and there was a little more coming down, despite the blue skies overhead. I was moving pretty well, but I didn’t have much time left by the time I got up there. I had to stop and turn back a half mile from the end, in order to get home at a reasonable hour. I was okay with that because the snow was getting deeper!

Snow on the upper trail made the descent much easier – I just sort of skipped down until I ran out of snow.

I really had to fight a crosswind to stay on the Interstate. It was dark by the time I reached Lordsburg. All the snow had melted, but there was a gale-force wind with brutal wind chill when I got out to pump gas.

The highway home was also snow-free until it rose into the low Burro mountains. There, I immediately hit ice and the vehicle started to fishtail. I was able to pull over and switch into 4wd, but still had only marginal grip. I switched on the emergency flasher and proceeded at about 35 mph. Within a few minutes a car came up behind me and tailgated me dangerously close for another 5 minutes until finally passing. It was a cheap little Japanese car, and it immediately speeded out of sight in the icy snow.

I expected to find it in a ditch ahead, but somehow the driver made it. And I found that I could actually drive faster now I was in 4wd. Still, it took me about twice as long as usual to get through the mountains. A long, exciting day!

No Comments

Fire, Part 5: Wildfire Revelations

Saturday, February 20th, 2021: Fire, Nature, Wildfire.

All images by Max unless otherwise credited.

Previous: Recovering in Burn Scars

Wildfire and Habitat

Throughout these Dispatches on wildfire, I’ve been using the word habitat as if we’re all familiar with it and understand it in the same way. But is that true?

In ecology – the study of relationships between living organisms and their environment – habitat means, to quote Wikipedia: “the array of resources, physical and biotic factors, present in an area that allow the survival and reproduction of a particular species.” Your habitat is the area around your home where everything you need comes from: air, water, food, shelter, healthcare, etc.

But because many organisms range widely for the resources they need, habitat can be hard to pin down. We’re most familiar with birds – they can seemingly go anywhere. For some migrating birds, their habitat would seem to be an entire hemisphere of the earth. Whales, of course, also migrate thousands of miles. But even a colony of ants can live in a forest and harvest food from a nearby meadow – and vice versa.

As Wittgenstein observed, language is a game. The meanings of words are not prescribed in advance by dictionaries; words acquire meaning during use, and dictionaries are compiled after the fact to report on the usage of words in society.

Experiencing firsthand the changes wrought by wildfire in the Southwestern landscape, I’ve groped for words to describe and share my experience. When biologists, conservationists, and land managers get together in the field, I’ve always heard them refer to a forest, a grassy meadow, a desert, a stream corridor, or a seashore as a type of habitat – for example, “You’ve got that forest habitat next to a sagebrush steppe.” In that usage, habitat doesn’t refer to a single species and its needs, it refers to a physical area hosting and providing the needs of a distinct community of countless different species – from bacteria and fungi to trees and large mammals – whose interactions with each other and the nonliving components of that area constitute an ecosystem. That area, that type of habitat, has boundaries, beyond which it ends and other, adjacent types of habitat begin, and it’s defined in terms of the recognizable features that distinguish it from other, adjacent habitats. For example, a forest bordering on a meadow, or an ocean bordering on a coast.

Biologists are not really supposed to use the term “habitat” in that vernacular sense, as a place defined by a geographical feature, or an alliance of dominant vegetation, hosting a distinct community of species. But we need a word for such a place, and we grope for something more accurate.

Wildfire makes this need even more urgent. Within hours, a wildfire can turn a forest full of trees and the animals that depend on them into a smoking, ash-blanketed moonscape. The forest provided habitat for countless species, but what do you call the empty moonscape? And when, after monsoon rains, the ashy wasteland is gradually replaced by clumps of annual wildflowers here, stands of ferns there, isolated thickets of aspen here, scattered oak seedlings there, with birds and other animals moving back and forth between them – what do you call the new landscape? The theory of succession says that the new regime is transitory. Over time, species will grow and spread, competing for light, space, water, and nutrients. The perennials all start small, but some will end up dominating others.

That takes time – decades and human generations, in the case of this former forest – and in the meantime, what used to be distinct, homogenous habitat is an unstable, transitional mosaic of patches. Countless plants and animals begin using it immediately after the fire and increase in numbers and complexity from then on. The “new normal” is evolving, but it still provides habitat for these species.

Thus wildfire forces us to talk about habitat that’s divided into a mosaic of patches that are ever-changing and shared between countless species that overlap in some sort of dynamic network. Just as we defined the previous, larger, homogenous and stable area by its most recognizable features, we define each evolving patch by the features that are temporarily dominant. The more we strive for precision and follow the mandate of reductive science to focus on individual species, the more wildfire forces us to take a holistic view.

Desert Fires, Forest Fires

Across my four decades in the Mojave Desert, I can think of only three memorable wildfires. The small one I woke up to in 1989, described in Part 2, is the only one I know firsthand. The other two, the Hackberry Fire of 2005 and the slightly smaller Dome Fire that decimated our most famous Joshua Tree forest in 2020, consumed less than 200,000 acres. During that same period, the forested mountains of Arizona and New Mexico have experienced dozens of mega-wildfires consuming millions of acres. Whereas the prehistory of wildfire in the desert is poorly known and controversial, the forests of the Southwest are widely acknowledged to be adapted to and dependent on wildfire.

During my lifetime, the frequency and intensity of wildfire have increased in both habitats. Most “environmentally-conscious” people now assume that climate change is at fault, simply because media authorities have oversimplified climate change into the scapegoat behind all our environmental problems. But fire suppression, not climate change, is the main reason why more forests burn now than in my youth. Wildfires would’ve been common decades ago if our government hadn’t prevented and aggressively fought them.

Anyone can recognize that a warmer, drier climate will dry out both living and dead vegetation, increasing the risk of fire. But the desert and the forest pose very different risks.

Yes, reductive science tells us that the loss of forest reduces absorption of carbon by the “biosphere,” accelerating climate change on a planetary scale. But Southwestern forests are meant to burn, and the resulting habitat mosaic can be more diverse and productive than the artificial uniformity we created through fire suppression. The forest needs wildfire to restore its balance.

Not so in the desert. As I described in Part 3, unlike the Southwestern forests, desert habitats are being degraded and lost at an ever-accelerating rate due to invasive plants – and of course, due to urban and industrial development – particularly the misnamed “green” energy. Wildfire in the already extremely arid desert will explode in future decades as our rapidly increasing demand for electricity – misbelieved to be a “clean” source of energy – sparks more infrastructure fires, and as more and more invasive plants spread by our “green” electric vehicles provide more and more fuel for high-intensity wildfire, clearing more and more native habitat and replacing it with degraded, biologically impoverished land dominated by aliens.

We Europeans were wrong to call it a desert when we first saw it, because back then, it was a diverse, productive wonderland. Now, we’re making the place fit the name – a wasteland created by our expansion and innovation, a victim of civilization and progress.

Forest Reborn in Fire

Science doesn’t really answer all our questions or provide a definitive explanation for what happens in nature – science provides simplified abstractions that can mislead us into thinking nature is orderly and can be controlled by us.

In the ideal, theoretical, stable habitat, with a stable climate, stable landforms, and a stable ecosystem or community of organisms, scientists tell us that wildfire occurs in a pattern they call the fire regime. Within that theoretical regime, wildfire occurs in fire cycles, meaning that fires repeat at more or less regular time intervals. Each fire is followed by a more or less predictable sequence: flooding, erosion, deposition, plant invasions and colonizations, a period of decomposition, competition, and instability, eventually leading to a stable state in which the habitat and community are just waiting for the next fire.

In this theoretical model, climate – the yearly cycle of weather, from wind and cloud cover to precipitation, temperature averages and extremes – enables specific communities of organisms to settle into specific niches where, working together, they establish distinct habitats and ecosystems, adapting to wildfire and further shaping its regime – its pattern – and its cycle. This is ecology in the broadest sense – living and nonliving, earth and sky, ephemeral phenomena and stable pattern – working together to achieve what in my field of science – the science of motion and change – was called a dynamic equilibrium.

A particular fire regime, and its corresponding cycle, are of course determined by habitat, which is in turn determined by landscape, its geological foundations, climate, and evolutionary history. Regardless of climate, mountains create elevational zones of habitat, from the desert basins to the arid grasslands, the mid-elevation, fairly open forest of trees with spreading crowns, and the high-elevation mixed-conifer forest of tall, slender trees creating a more or less solid canopy. Mountains create corridors and niches of habitat via their rock substrate, their peaks, ridges, rock outcrops and cliffs, and canyon bottoms. Patches of fast-burning fuel – accumulations of dry or dead vegetation, especially from invasive plants – provide a ready-made path for wildfire, diverting it away from slower-burning patches. Both habitat and landforms create the potential for fire and shape its spread.

Within a distinct habitat and ecosystem, the fire adaptations of species, and the conditions of individuals – their relative age and health – determine how they react to fire, and how fire may cull weak or unhealthy individuals while protecting the population. The thick bark on the trunks of mature pines and firs acts as insulation, protecting the sapwood inside. Mature trees shade and kill their lower limbs, which fall off, denying surface fires a “ladder” of fuel to climb to the crown. This is particularly effective for ponderosa pines, which have thick branches that could offer substantial fuel.

Succulents like agave, yucca, and cactus, which we think of as natives of the open desert, thrive in the fire regime of forests because their stored water and underground mass cools and protects them from total destruction in a wildfire, so that even if their thick leaves are completely killed, the plant’s hidden heart can still bear fruit.

In southwestern New Mexico, we may reference the four seasons of our European cultural legacy for convenience, but those are not the seasons we get. Our windy season, in March and April, dries out the land, increasing fuel for wildfire. May and June, the buildup to the Southwest monsoon, bring heat and dry lightning in the mountains. Most of our wildfires start in May and June.

If we get a good monsoon, starting in July, rains will start to suppress the fires. Climate is the pattern, weather is the expression, preparing the land for burning, lighting the fires, then putting them out.

We all know how wildfire can be started by lightning strikes. But did you know that rocks falling against each other can spark wildfire?

Humans start wildfires through carelessness – like the campers in Arizona’s White Mountains who left their campfire smoldering and started the largest wildfire in the history of the Southwest. Or by malicious intent, like the arsonist(s) who destroyed the forest on the little peak I hiked near town.

Our advanced technologies are simply too complex for us to control and keep safe. A driver pulls onto the weedy shoulder of the road to take a call, her hot exhaust pipe catches the weeds on fire, then she drives away, oblivious. Small engines are used millions of times every day at the urban-wildland interface – chain saws, weed-whackers, lawnmowers – generating sparks that can cause wildfires.

Recently, some of the most destructive fires at the urban-wildland interface have been started by arcs or failures in electric power distribution systems. As we try to slow climate change by transitioning from fossil fuels to electric cars, the increased demand on electrical infrastructure will spark more wildfires.

Indigenous people have always started wildfires to increase the productivity of habitat, and Europeans have belatedly appropriated indigenous practices in North America. Fires with a non-human cause burn according to non-human constraints of landscape, habitat, and weather. Humans may schedule, locate, and direct their fires – a prescribed or controlled burn – for defined purposes like “fuel reduction.”

Once a fire has started, it develops a life and history of its own. It’s intuitive for us to think of fire as a thing – even a living thing – but in the reductive domain of European science, fire isn’t a distinct thing, it’s an ephemeral state or property of the “matter” which is burning at the moment. The flames consuming a tree, and the flames consuming its neighbor, are not considered a continuous entity or phenomenon. From the perspective of physics and chemistry, it’s all just atoms, molecules, and energy.

But in the real world, fire is most definitely a living thing. A wildfire is born, it grows, it travels. It may merge with a neighboring fire, like two cells fusing. Like living organisms, it’s always dying even as it grows and thrives – embers blackening and cooling in one place while flames blossom in another. Fires that spread from a center die from the inside out, an expanding ring of flames surrounding a blackened core.

But the movements of fire are directed by landscape, weather, and habitat. In mountains, in still air, a fire will burn uphill. But air is seldom still in mountains, and fires generate their own winds. Strong winds may carry sparks for miles to give birth to spot fires, children isolated from the parent. While moving, a fire may encounter fast-burning fuel that draws it forward. Or it may hit an obstacle – a patch of wet or slow-burning vegetation, a cliff or rock outcrop, the sharp crest of a ridge, a river, pond, or lake. The obstacle may stop the fire, force it to detour, slow it down, or simply reduce its intensity. Obstacles or patches of low intensity provide refuges for plants and fleeing animals.

Depending on cause and habitat, a fire may spread through soil – a ground fire – through surface vegetation – a surface fire – or from treetop to treetop – a crown fire. But these are just convenient abstractions – the reality is much more subtle and complex.

A fire is said to make a run – burning a path uphill, downhill, or across country – directed by landforms, temperature gradients, wind currents, and the availability of fuel. In a complex landscape, it moves like an amoeba, an amorphous being, drawn to patches of available fuel.

Burning vegetation generates smoke, clouds of particulates and gases that warn animals, trigger reactions in plants, release nutrients, and rise into the atmosphere, affecting weather.

Fire doesn’t just consume trees and other plants. Fire interacts with other living things, like any other partner in the ecosystem. Plants come prepared with their adaptations, like the thick bark and limbless trunks of the mature pines, and the water-filled leaves of the succulents. Heat rising from a surface fire in a fuel-rich forest may kill all or most of the leaves and needles above without burning the tree. A tree whose vegetation is killed may die from the top down, its roots rotting until the skeleton is eventually toppled by wind.

A hot crown fire burns downward. If the burning ends at the lowest branches, a standing char – a blackened trunk – is left and may stand for decades. If the trunk keeps burning to the ground, the fire will follow the roots underground, until all the wood is consumed, leaving tunnels in the soil.

Like plants in the forest, animals are said to be adapted to wildfire, meaning they respond to warnings – smoke, the sounds of burning, the sight of flames – by fleeing or taking cover, taking advantage of natural refuges created by variations in landforms, water features, and vegetation. Birds fly away, reptiles hide underground. Some individuals may perish, but the population generally survives.

In the immediate aftermath of wildfire, we see loss, destruction, blackened skeletons, ground covered with ash. What we don’t see is potential new habitat prepared by the fire’s release of massive amounts of raw nutrients. An unhealthy excess of fuel buildup, purged. Unhealthy individuals and populations, cleansed. Fire-adapted roots and seeds, stimulated by fire and waiting, below the ash, for the next rain to sprout.

Many plants of our Southwestern forests are so well-adapted to wildfire that when their aboveground parts are completely consumed, they immediately and aggressively expand underground and re-sprout. Quaking aspen, gambel oak, and New Mexico locust respond this way, filling in burn scars with impenetrable thickets.

Burned agaves, including our narrow-leafed beargrass, immediately re-sprout from unburned root stock, along with ferns and mosses.

Nutrients released into the soil directly by wildfire, and later by the decomposition of fire-killed vegetation, encourage the growth of sprouts from the underground seed bank which is always present, waiting to take advantage of disturbances like fire.

When a stand of trees and other vegetation is killed and largely consumed by high-intensity wildfire, the ground that was held in place by roots is now vulnerable to erosion. When it rains after a fire, floods full of ash and sediment rush downstream. Like terrestrial plants and animals, fish and other aquatic organisms are fire-adapted and sense coming changes. Some are killed, but others take refuge or are washed downstream, to return later when conditions are right.

We think of erosion as merely loss of ground, but in nature, erosion opens new habitat, and floods and landslides move old rocks, soil, and dead vegetation downhill, where they’re eventually deposited to form more new habitat. Erosion can expose buried seeds. In general, erosion and deposition are a form of natural tilling – agitating, turning, and mixing the soil, releasing buried seeds and nutrients. Major erosional and depositional events, like I found in the Pinalenos, create new landforms, which themselves shape new habitats and microclimates of the living earth.

Wildfire releases new chemical nutrients directly, through the burning of soil, vegetation, and dead organic matter, but the process continues for decades after as organisms killed by the fire are consumed by decomposers like fungi, insects, and gut bacteria. The snags and char of fire-killed trees hold precious resources, the product of decades of hard work by the plant. Decomposers process these resources and make them available to the broader ecosystem.

The old notion of ecological succession says that, if environmental conditions – the fire regime – persist, the post-fire undergrowth and thickets will eventually be succeeded by some form of mixed-conifer forest, completing the fire cycle. Pine and fir seedlings will sprout from an existing seed bank, or from seeds carried by birds and buried by squirrels, and eventually grow to shade the shorter trees, which will die out, and you’ll end up with a replacement forest.

But now, with global climate change and massive, high-intensity wildfires, many forests are in danger of stand replacement and forest conversion. We’re told this is a bad thing, because forests help absorb the carbon emitted by our machines, protecting the earth from further climate change. But fire’s removal of the forest canopy opens light and space and liberates nutrients for lush forage – grasses and annuals, the foliage of deciduous shrubs and trees – attracting both herbivores and the predators that depend on them.

Patchy Burns, Biodiversity, and Mosaics

A decade ago when our big local wildfires started, and I anxiously followed the news, I was shocked and saddened by the scale of destruction that expanded daily, reaching hundreds of thousands of acres. Then, after a fire finally died down and damage surveys were reported, I was encouraged when authorities claimed only “patchy” damage.

It was only recently, during my weekly hikes in burn scars, that I began to understand. As described above, living fires tend to grow and move like amoebas, shaped by landforms, weather, and habitat. Even the most intense wildfire leaves patches of lower intensity and unburned habitat, so that the reported acreage of a large wildfire, measured by the outer boundary, is typically meaningless.

The giant Wallow Fire in Arizona’s White Mountains started at the southern edge of the range in the Bear Wallow Wilderness, where the high plateau is deeply dissected into ridges and canyons. So at its origin, the fire was diverted by terrain and missed large patches of forest. But when it reached Escudilla Mountain at the opposite, northeast end of the plateau – an ancient volcano with broad, rounded slopes of volcanic sediment that were not dissected by deep ravines – the fire found no barriers and engulfed the entire massif. Escudilla is older than the rest of the range. The modern fire’s growth and movement were determined by processes that formed the earth’s surface 20 to 40 million years ago.

There, and in similar terrain of New Mexico’s Mogollon Mountains and Black Range, wildfire completely eliminated mixed-conifer forest from entire slopes. Those mega-patches may recover slowly via natural succession, or they may be replaced by very different habitat.

What’s important – the potential for recovery – may be largely invisible, hidden underground. A moonscape may be replaced in only a few seasons by a stand of ferns and Gambel oaks. A formerly continuous stand of mixed-conifer forest will be replaced by a mosaic of forest, shrubland, and grassland.

The scientific study of patch dynamics theorizes that the smaller the patch, the less diverse. This would suggest that a continuous forest stand covering many square miles is much more diverse than the small patches of forest remaining after a patchy burn. But how can that be?

The original uniform mixed-conifer forest has been replaced by a mosaic of dramatically different patches: new grasslands, new shrublands, new eciduous forest, and remaining conifer forest. Each new patch can support a community that’s dramatically different from the original. And the proximity of different patches provides more opportunities for organisms that cross boundaries, like birds, herbivorous mammals, and their predators. Patch dynamics only studies plants, but plants are only one of the five kingdoms of life.

Southwestern forests may sometimes appear pristine because they lack the invasive plants which have taken over other Western habitat like deserts and overgrazed grasslands. But the forests we’ve known in our lifetimes are not natural. Before Europeans came and began suppressing wildfire, it’s likely that Southwestern forests were much more complex.

Adaptation and Resilience

Like habitat, adaptation is another word we understand poorly and use ambiguously, if at all. Biologists say plants and animals are adapted to particular environmental conditions, as a result of evolution. But that implies a passive, static, stable end state. In the traditional model of evolution, random genetic mutations make some individuals more successful than others, and those individuals thrive and produce successful offspring, while the less well-adapted die out.

European anthropocentrism has motivated an ongoing cultural effort to prove that humans are exceptional and qualitatively different from other animals. In the beginning, God gave us dominion over nature, but now, in a more secular society, we look for scientific evidence of our superiority to justify staying in charge. Some scientists say that our big brains represent a quantum leap in animal intelligence. While other animals are slaves to instinct, we alone possess consciousness and self-awareness, we alone are aware of our own mortality, we alone laugh, we alone think and reason, accumulate knowledge and wisdom, and pass it on to our offspring. We alone use tools, developed language and art, and so forth.

But in parallel, other scientists continue to debunk these Eurocentric misconceptions. Among humans, as among other animals, the vast majority of behavior is involuntary, driven by habit, not by reasoning or even by conscious intent. Our addiction to the groupthink of social media, in which peer groups reinforce unexamined beliefs, is a troubling reminder of this. We are typically no more aware of, or in control of, our behavior than a cow heading out to pasture.

But like us, other animals are capable of breaking their habits. Animals can observe, think, make decisions on the fly, learn, remember, and teach their offspring. Both animals and plants are often capable of migrating to new habitat when they lose theirs. This is not static adaptation, this is actively adapting in real time to disturbances, to changes in environmental conditions. And in line with conventional evolutionary theory, natural populations are provided with ongoing mutations that promote continuing, involuntary, unconscious adaptation of the species. Species in nature are not just adapted, they’re adaptable – or to use another newly fashionable term, they’re resilient.

A few years ago, after decades of fearing a takeover of desert riparian habitat by tamarisk, I stumbled upon a remote canyon where tamarisk had become established in some kind of surprising equilibrium with native plants. Very old tamarisk plants with trunks a foot in diameter stood isolated throughout the canyon, at respectful distances from traditional natives like seep willow and honey mesquite. All seemed stable and thriving, and I could see no new seedlings or spreading thickets of tamarisk. Maybe it was a freak of climate – maybe momentary conditions in the distant past had allowed the old invaders to get established, but subsequent conditions hadn’t enabled new seedlings. Or maybe it was a glimpse of the future.

We all seek stability. But in nature, catastrophic disturbances occur in cycles, and stability and sustainability always go hand in hand with change and adaptability. Plants and animals don’t expect to maintain the same conditions for their offspring in the future. They expect their offspring to be able to adapt to changing conditions.

Rising Temperatures and Drought

From year to year and season to season, higher temperatures and reduced precipitation cause whatever moisture is stored in living vegetation, dead organic matter, and soil to evaporate, resulting in drier and better fuel for wildfires. Prolonged heat and drought stress living plants, lowering their defenses against wildfire or killing them and adding to the fuel. We can all tell that climate changes during our lifetimes, from cool and wet years to hot and dry, back and forth, seemingly erratically. How do we sense when the effect of climate on our habitat puts it, and us, at risk?

People in traditional societies stayed in one place from generation to generation, accumulating and passing on long-term knowledge and wisdom about the local habitat they depended on for their livelihood, including long-term climate trends. But our hyper-mobile society pressures us to relocate over and over again, so we’ve lost that local, community-based perspective on climate. We’ve become dependent on news media and distant experts.

Weather forecasts can prepare us for local conditions during the next week, but to compete in the consumer economy, news media distract us with sensational events on a national or global scale, like a “polar vortex” producing mega-storms thousands of miles away, resulting in catastrophic urban damage and human suffering. Excepting those temporary system failures, our universal industrial infrastructure ensures that we’re largely independent of climate. No matter how hot and dry it gets, we can live in Phoenix or Las Vegas, keep ourselves cool with air conditioning, and turn on the tap to get water delivered from an invisible reservoir hundreds of miles away.

When I moved to California’s Bay Area in 1976, to attend grad school, I was told the region was in a drought. That was my first experience with drought, but since I didn’t know the region without drought, it didn’t really mean anything to me. The foothills behind the school greened up a little in winter, but spent the rest of the year covered with dead, tan-colored vegetation. Water still came out of the tap, and since I lived in an apartment, I didn’t have to worry about watering the lawn.

Eventually I learned that the California climate came in cycles. There were multi-year droughts, and then eventually there would be a wet winter or two. But civilization’s industrial infrastructure protected us and ensured that droughts caused little hardship – they were actually kind of fun. We could compete against each other to use less water and feel more righteous.

After falling in love with the Mojave Desert, I met scientists who told me that the desert, depending on the same winter storms as the coast, had its own cycle of multi-year droughts broken by wet winters. As I immersed myself in the desert’s regional climate, habitats, and ecosystems, I developed a sense of when the land was “hurting” from drought.

I also learned that, unlike back home on the coast, weather in the desert was highly localized. Precipitation totals from both winter and summer storms tended to be so low – only a few inches per year on average – that deviations of a quarter of an inch made a big difference.

The topographic relief of a mountain range compresses wind-driven air, “squeezing” rain or snow out of clouds, so that storms often form directly over mountains, and mountains tend to get much more precipitation from passing storms than valleys. But in the desert, each isolated mountain range, separated from its neighbors by miles of low basins, can receive widely differing amounts of precipitation, both from individual storms and throughout the year. One mountain range can be suffering while its neighbor is doing okay. When I call friends in the desert to ask about weather, they give me different reports on different mountains.

We approach our desert mountain wilderness on highways through broad basins at middle elevations, where the landscape is thinly carpeted with the delicate foliage of our iconic shrub, the creosote bush. The tiny, waxy leaves glow a vibrant green when it has enough water, but shrivel and take on a more muted brownish tint in drought, and we desert lovers can tell that from a distance, at a glance.

Our first destination is usually a natural water source – a more or less perennial spring or seep. We know the amount of water present on the surface is directly dependent on annual precipitation. Living through both summer cloudbursts and winter storms from the Pacific, I learned that it’s the long soaking rains of winter that restore life. Water from summer cloudbursts quickly flushes downhill, evaporating along the way. A long, steady winter rain is absorbed by soils, plants, and fracture zones in the rock, where the water may be released slowly at natural springs and seeps for use by wildlife during coming seasons.

During the four decades I’ve been exploring the desert, more and more water sources I assumed to be perennial have dried up. Drought is deepening, and wildfires will be more destructive.

Scientists collect data with their instruments – thermometers, hygrometers, rain gauges, etc. – store the data in databases over time, and analyze it to measure climate change in specific regions. But weather stations are rare in the desert. There’s none in the entire mountain range where my land is located, so there’s no data – either current or historical – on temperature or precipitation there.

Field biologists try to detect the local impacts of climate change via surveys of plant and animal populations, sampling and analyzing, for example, seed germination rates, nutrient value of forage at peak times, survival rates of offspring, and mortality rates per population. Climate stress may also be inferred from secondary impacts like disease, parasitism, and of course wildfire.

My new home in southwest New Mexico has a distinct regional climate regime, depending equally on winter storms and summer monsoons, whose moisture comes from the Pacific Ocean and the Gulf of California. Old-timers spoke of the monsoon starting like clockwork after the 4th of July, but in my first year, it didn’t start until the end of the month, and it’s never been dependable since. Sometimes it barely comes at all. We don’t talk about drought as much as about a “good” or a “poor” monsoon, and a wet or dry winter. After 15 years, I seem to remember only two or three good monsoons, but those remain my definition of our climate.

A neighbor who grew up here told me they used to regularly get 16″ of snow in a winter storm, but since I moved here fifteen years ago, we’ve never had more than 8″ in town. I haven’t measured or kept records on temperature, rainfall, or snow accumulation, but the past few winters have seemed unusually warm and dry, and monsoons have been poor.

Whereas the monsoon is our iconic season, it’s the winter snows that restore our mountain forests. In the cooler climate of our region’s past, snow accumulated at high elevation throughout the winter, then melted slowly in March and April. This allowed soil, dead organic matter, and living plants to soak up the moisture. Now, in a warming climate, when snow falls, it quickly melts and moisture runs off before the system can absorb and store it. In the dry and windy season that follows, wildfire is provided with more and better fuel.

Our mobility has robbed us of the local experience and wisdom that could help us judge what’s happening, while media distract us with images of distant disasters and experts warn of global processes too complex and abstract to be locally useful. We’re left with generalized anxiety about climate, and a desperate hope that the authorities will protect us.

We civilized humans may accept that climate is changing, but unlike animals, we’re not adaptable – we’re not resilient. Despite abundant evidence that our societies are conflicted and dysfunctional, we cling to the irrational hope that our leaders will fine-tune our vast industrial infrastructure, so we and our children can continue to enjoy the same standard of living, jumping on a freeway to visit family or shop at a distant store, running air conditioners in Phoenix, turning a faucet to get water from a distant reservoir. Meanwhile, out of sight and out of mind to most of us, that infrastructure destroys more natural habitat and sparks more wildfires.

Beauty of Wildfire

Everyone in the American West has overdosed on TV footage of wildfire, usually shot from the air at night, and from that, we may imagine we know and understand wildfire. But the fire cycle has a complex and often subtle beauty that’s not limited to the momentary apocalyptic vision of flames burning at night.

Next: Government and Wildfire


Welcome to Mexico!

Monday, February 22nd, 2021: Burro, Chiricahuas, Hikes, Southeast Arizona.

Last time I returned from the Chiricahuas, near sunset, I was driving up through the low pass through the Peloncillos when I glanced left at a small hollow in the granite cliffs and saw a stone man. The light was just right to highlight this small pinnacle with a spherical top. So this morning, on my way back, I stopped to photograph it. Unfortunately the light was wrong, but now I saw it had a companion on the left.

Our mountains had received a lot of snow last week, and I’d already fought my way through 14″ of powder to 7,400′ on my shorter midweek hike. So for today’s long day hike, I was looking for a trail that stayed well below 8,000′ and avoided north slopes. During earlier researches I’d seen that I could chain together three trails in the Chiricahuas to get plenty of distance at lower elevation, but I hadn’t tried that yet because it didn’t offer enough elevation gain to suit me. Today might be the right time.

It starts in the most famous part of the range: South Fork Canyon, which is ground zero for birders. This canyon suffered major erosion and debris flows after the 2011 Horseshoe 2 fire, so the bottom was full of logs, piles of pale rock, and erratic boulders carried down from above.

But much of the riparian forest is intact. I was strolling rapidly through the shade along a winding trail lined with leaf litter when I heard a rustling in the vegetation above the trail at my right. I stopped and turned and saw a sight so amazing that I was pretty much paralyzed.

A smallish hawk with a high-contrast banded tail – probably a Cooper’s – launched laboriously off the slope, only about 6′ above ground, carrying a full-grown reddish squirrel – probably the Mexican fox squirrel endemic to this range – dangling by its shoulders from the hawk’s claws, so that the hawk and its prey were both facing the same direction. The squirrel wasn’t struggling so it was probably either dead already or in shock.

The hawk continued slowly, carrying its prize past me at a distance of only about 8′, and steadily off into the distance between the trunks of the riparian forest. The weight of that hawk is virtually the same as the weight of a squirrel. That would be like me carrying someone my own weight, while flapping my wings.

I stared off into the distance for a minute or two, then continued following the newly re-routed trail upstream for two miles. Then I turned left onto a branch trail that climbed the steep eastern ridge out of the canyon. At a saddle where the trail crosses the crest is an outcrop of amazing bright red rock, probably volcanic tuff or conglomerate like most of the rock in this region.

Past the red rock saddle the trail enters a new landscape, hidden from below, surrounding a sort of hanging canyon. The 2011 fire made short, narrow runs into this canyon from the east, so the current vegetation is a mosaic. The whole area feels close, intimate, and shady.

After crossing the canyon, the trail switchbacks up to a higher saddle which represents a divide between the interior and exterior of the range. I’d seen footprints ahead of me on the trail going into this canyon, but I left them behind as I climbed, and as usual I was the first to complete this trail this season.

When I reached the high saddle at the divide, my cell phone made the incoming message sound. “Welcome!” said the text from Verizon. “You are now in Mexico. The following rates apply…”

I was a few miles southeast of where I’d previously hiked in this range, and from that saddle, my view was south, and what I saw really was the mountains of Mexico. My phone was now connected to a tower somewhere over the border.

The guy who monopolizes trail information for this range had reported this trail in “good” condition. But the next trail I planned to take, southwest from this saddle, was reported to be in “bad” condition. I’d already had to climb around a couple of badly eroded sections on the climb out of the canyon, so I was curious about what I would find ahead on the next trail.

The first challenge was finding the trail. Searching through the scrub in the saddle, I eventually came upon two old wooden signposts, with a dry-rotted, illegible trail sign at their feet. Ahead was a narrow gap between two shrubs that might be the trail.

In the event, this trail turned out to be really easy to follow. It lacked the big washouts of the earlier trail. Its only drawback was that it now seemed to be used only by game; most of it was narrow and banked, rather than flat, crossing loose gravel on steep slopes, which was made it hard on my vulnerable foot.

Traversing around the outside of a ridge, it eventually climbed to a still higher saddle which gave me a broad view of Horseshoe Canyon, a major canyon on the south side of the range, and Sentinal Peak, the southernmost peak in the range. And I saw more of Mexico.

I kept traversing past the saddle until I felt my time was up and I had to turn back. I figured I’d gone at least 7 miles already.

It was a long slog back. On the way up, I’d felt like this trail was in better shape than most, but with my sensitive foot, they all feel worse going down. According to the years-old GPS data of the trail guy, I hiked less than 14 miles round trip. But I was walking fast during the entire hike, and even discounting short breaks, it took me an hour longer than a 16-mile hike with similar elevation that I did last summer. So go figure.

No Comments